S Center for Embedded Networked Sensing

ensor-Actuated 'Roboduck' Network for Marine Monitoring

Introduction: Locating and Tracking Marine Microorganisms using Gradient information

Problem Characteristics

- To locate, track and study the growth and migration patterns of harmful algal blooms like those caused by brown tide algae.
- Assumption: The source generates a gradient which can be sensed by the robots
- Dynamic source: The intensity of the gradient generated by a source may vary over time
- Source Location: The gradient source location may vary over time
- Multiple Gradient Sources: There can be multiple gradient sources near the robots
- Applications: Temperature, Light intensity, Chlorophyll, pH, Opacity, Salinity (conductivity), Minerals etc.

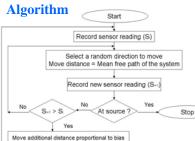
- **Characteristics of Bacterial Motion**
- Produced through the action of flagella
- Move towards nutrient sources by following gradients
- Move towards attractive stimuli and away from harmful substances in a process known as Chemotaxis

A straight run of an average duration followed by an uncoordinated tumble which randomizes the direction of the next run

increasing attractant concentration

Problem Description: Locate and Track Dynamic Gradient Sources (Marine Microorganisms)

Solution Criteria

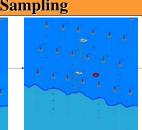

- Simplicity
- Robust and adaptive to changes in environment Minimality in
- sensing/memory/communication/processing Insensitive to errors in sensing
- Should not require localization
- Should work in-situ
- Should have a small form factor and be scalable
- Should monitor the area constantly and investigate

significant changes in detail **Proposed Solution: Biased Random Walk with Adaptive Sampling**

Kev Ideas

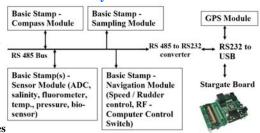
- The static network (buoys) regularly monitors the water body at a lower resolution and signals any detected anomaly to the roboduck for further investigation
- The roboduck can move to the location of interest and perform in-situ sampling and analysis as well as collect samples for further lab analysis. Data collected by its onboard sensors helps bridge the data voids in the static network.

Biased Random Walk → Directed Motion

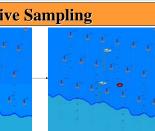

Field Tests Preliminary field tests

- Shelter Is., NY
- Pascal Fountain, USC Campus
- Balboa Lake, San Fernando Valley
- James Reserve, Idyllwild, CA

Application Areas


Ocean coast monitoring, detection of algal blooms, generating gradient profiles, distributed plume source tracking, detecting oil spill boundaries

Basic Buoy / Node - Architecture


Preliminary Results

- Successful autonomous navigation to GPS waypoints using PID control
- Development and initial field testing of the static stargate based buoy network for continuous and autonomous water body monitoring

Conclusions

- Success with single and multiple source localization
- Success with unattended in-situ monitoring
- Adapt to boundary detection
- Modest tolerance to errors in sensor measurements (only the difference in readings is used to make a decision, not the absolute sensor readings)
- **Requires minimal amount of memory/sensor**

UCLA – UCR – Caltech – USC – CSU – JPL – UC Merced

